Evidence for diet effects on the composition of silk proteins produced by spiders.
نویسندگان
چکیده
Silks are highly expressed, secreted proteins that represent a substantial metabolic cost to the insects and spiders that produce them. Female spiders in the superfamily Araneoidea (the orb-spinning spiders and their close relatives) spin six different kinds of silk (three fibroins and three fibrous protein glues) that differ in amino acid content and protein structure. In addition to this diversity in silks produced by different glands, we found that individual spiders of the same species can spin dragline silks (drawn from the spider's ampullate gland) that vary in content as well. Freely foraging ARGIOPE: argentata (Araneae: Araneoidea), collected from 13 Caribbean islands, produced dragline silk that showed an inverse relationship between the amount of serine and glycine they contained. X-ray microdiffraction of the silks localized these differences to the amorphous regions of the protein that are thought to lend silks their elasticity. The crystalline regions of the proteins, which lend silks their strength, were unaffected. Laboratory experiments with ARGIOPE: keyserlingi suggested that variation in silk composition reflects the type of prey the spiders were fed but not the total amount of prey they received. Hence, it may be that the amino acid content (and perhaps the mechanical properties) of dragline silk spun by ARGIOPE: directly reflect the spiders' diet. The ability to vary silk composition and, possibly, function is particularly important for organisms that disperse broadly, such as Argiope, and that occupy diverse habitats with diverse populations of prey.
منابع مشابه
Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
We investigated the natural variation in silk composition and mechanical performance of the orb-weaving spider Argiope trifasciata at multiple spatial and temporal scales in order to assess how protein composition contributes to the remarkable material properties of spider dragline silk. Major ampullate silk in orb-weaving spiders consists predominantly of two proteins (MaSp1 and MaSp2) with di...
متن کاملVariation in Protein Intake Induces Variation in Spider Silk Expression
BACKGROUND It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food an...
متن کاملComposite materials based on silk proteins
A number of animals have evolved to produce silk-based composite materials for a variety of task-specific applications. The review initially focuses on the composite structure of silk fibers produced naturally by silkworms and spiders, followed by the preparation and applications of man-made composite materials (including fibers, films, foams, gels and particulates) incorporating silk proteins ...
متن کاملSilk Spinning in Silkworms and Spiders
Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms prod...
متن کاملThe silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., - a review
The domesticated silkworm, Bombyx mori Linn., a lepidopteran molecular model and an important economic insect that are emerging as an ideal molecular genetic resource for solving a broad range of biological problems. The silkworm, B. mori produces massive amount of silk proteins during the final stage of larval development. These proteins are stored in the middle silk gland and they are dischar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 17 12 شماره
صفحات -
تاریخ انتشار 2000